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ABSTRACT /1%

The exact expansion of the electronic energy of the grouﬁd state
of one-electron diatomic holecules through the fourth order in powers
of the internuclear separation is derived by using the methods intro-
duced by Hylleraas (1931). It is thereby shown that the straightforward
perturbation treatment of the electronic energy of molecules based on
the united atom as given by Bingel (1959) leads to incorrect results
for the third order coefficient. The exact fourth order coefficient is
checked by using the Hellmann-Feynman theorem to relate the expansion

to the well known formula for the electrostatic potential due to a

hydrogen-like atom. HoTHOR
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THE EXACT EXPANSION OF THE ELECTRONIC ENERGY OF ONE-ELECTRON DIATOMIC
MOLECULES IN POWERS OF THE INTERNUCLEAR SEPARATION

Introduction

The total energy of a diatomic molecule AB with internuclear

separation R may be written
E(R) = W(QR) + zazb/R 1)

where W 1is the electronic energy and Za s & are the atomic numbers

b
of the nuclei. Since the electronic energy is finite for all values of
R it is natural to assume that it is analytic and may be expanded about

R =0 in powers of R :

1.3 1 .4
WQR) = W0+RW1+%RZW2+6RW3+24RW4+-.. @

The leading term Wo = W(0) is the energy of the united atom with
atomic number Z =-Za + Zb , and the other coefficients are similarly
properties of the united atom. The coefficients may be obtained in two
different ways:

(a) By means of the formulae of standard perturbation theory based

on the united atom and with the perturbation potential

where T.i* Tbi and r, are the distances of the ith electron from
nucleus A , nucleus B and the centre of nuclear charge. Bingel (1959)1
has proposed such a treatment and has expanded the first order perturba-
tion energy through terms in R3 .

(b) By regarding (2) as a Taylor series expansion with

n
W= QWARRY, (3)



and evaluating the derivatives of the integral for the electronic

energy,

W =_/'\VHWdT > 4)

with respect to R at R = 0 . This has been carried out by Steiner
(1961)2 through the fourth derivative by extending the technique used
by Brown (1958)3.

Both methods can be used in general for any molecule and the
straightforward application of either of them leads to the same expres-
sions for the coefficients Wn . However, while there is no doubt about
the correctness of the value of Wl , which vanishes, or of the general

expression for the second-order derivative W, = W"(0) , it is clear

2
from Steiner's work that the expression for the third coefficient W

3
cannot be correct. Furthermore, as Steiner showed, these methods give
the absurd result that the fourth coefficient appears to be infinite.
The object of this paper is to obtain the coefficients in equation
(2) for the only case in which they can be evaluated exactly, namely
that of a one-electron diatomic molecule. These values can then be

used as a critique for attempts to rectify the methods mentioned above.

Electronic Energy for One-Electron Molecules

Before presenting the detailed analysis of the SchrBdinger equation
for this case we shall collect together all the information about the
electronic energy W(R,Za,Z ) which can be obtained by simple methods,

The simplest feature is the symmetry with respect to the inter-
change of nuclei A and B . Since the scalar distance R isvinvariant

to such an interchange,
W(R,Zb,Za) = W(R,Za,zb) . (5)

A second general property, peculiar to one-electron molecules, is that

W 1is homogeneous and of degree two in Za R Zb and 1/R . This

follows from the SchrBdinger equation for the system by scaling the




electronic coordinates by A , which leads to

WRIX , A2, Mz,) >\2W(R,Za,zb) , (6)

which proves the property. In view of the symmetry and homogeneity
relations we could write W in the form ‘

W(R,Z ,Z Z?‘w(RZ,RzQz) (7)

)

where Q = Za - Zb .

Several limiting values of W are known.

(a) United atom, R =0 : W= -%Zz .

(b) Separated atoms, R = 00 : W -%Zaz (Za > Zb) .

(c) Atom A , Z, = 0: w

Also three limiting values of derivatives are known and can be used to
check the expansion.
(a) The force between the nuclei due to the electronic motion

vanishes at the united atom, so that

(awaa>R=o =W =0 . (8)
The proof is simple and is based on the inversion symmetry of the united
atom charge densityl’z.

(b) By the Hellmann-Feynman Theorem

(awlazb) aa(n) (9

Zb=0

where ¢a(R) is the electrostatic potential due to atom A at distance

R from the nucleus and is given by

(r)
o, = - [ 12‘—Br ar (10)

-%Zaz ; similarly for B .




where fg(r) is the electron density of atom A .
(¢) The coefficient w2 = W"(0) is well established and is related
to the electron density PUA(O) and field gradient at the nucleus. For

. . ., 1,2
S states of the united atom the relation is™’

4y zaZb

2. \pl
Wy = Q@W/OR)p, = 3 7 Pual® . (11)

A simple physical argument for the vanishing of W1 and the value
of W2 given by equation (11) is as follows. The electric field at a
point distance r from the centre of an atom in an S-state is
8'= Q(r)/r2 where Q(r) 1is the total charge within a sphere of radius
r . When r is very small Q(r) = -(4n/3)fIUA(0)r3 and therefore
E@ = -(4n/3)PUA(O)r . The force on nucleus A a short distance R,
from the united atom centre is therefore Fa = ZaE;(Ra) , assuming that
the charge distribution is unaltered to this order of approximation.
The equilibrium position of the united atom centre is such that Fa =F

b

or ZR =12 Rb , and hence the force F =F_ =F  between A and B
aa b a b

at distance R = Ra + Rb apart, due to the electrons, is

4y zazb
F = - 3 UA(0) 5 R . (12)

Since F = -OW/OR it follows immediately that Wl = ~-F(0) = 0 and

Wz = -F'(0) 1is given by (11).

Separation of the SchrBdinger Equation

The SchrBdinger equation for the system, which is
2 fa %
(%V t—+ -t W) ¥y = 0 (atomic units) , (13)
a b

may be separated by introducing confocal elliptic coordinates .§ I ¢,

the first two being defined by

3{ = (ra + rb)/R s '7 = (ra - rb)/R s (14)




and @ being the azimuthal angle. For Z: states, which are axially

symmetric, the wave function may be written in the form

v = BOPX(E) (15)

where H and X satisfy the "inner™ and "outer™ equations

‘-;;L[u -12) ’%J + (-Roy + pz‘le -C)H = 0 (-l<sy <D, (16)
%[(32-1)%]+(Rz§ -’ Fl4c)x =0 <Y cw), an
where

and C is the separation constant. Note that the outer equation (17)
depends only on the sum of the atomic numbers Z = Za + Zb and the
inner equation only on their difference Q = Za - Zb .

The procedure we shall follow to obtain the expansion of W in
powers of R is that introduced by Hylleraas4 in solving the equations
to any accuracy. The method is to expand the function H(?l) in terms
of Legendre polynomials and from the resulting determinant of elimina-
tion to obtain the expansion of C in powers of p and RQ . By
treating the outer equation for X(¥ ) in a similar fashion and equating
the two expressions for C it is possible to obtain the coefficients

in the expansion of W in powers of R .

Expansion of Inner Equation

Consider a solution of equation (16) in the form.a’5

oo

H(q) = z By By (o) (19)

L=0




where Fi(ﬂt) is the Lth Legendre polynomial, satisfying the dif-

ferential equation, similar to (16),

dPp,
d 2 [ 3
I '(1 -9 ) e ] +Q(.Q+ 1)Pl 0 . (20)

By substituting (19) into (16) and using the recurrence relation for

: .. . 2
PQ twice to eliminate terms in 41( and M~ we get

h&{C +(R+ 1) - Pz[(zilf-%;-(;)& . 1)]} + h1+1q(§m++13) * hn-lq(ﬁlﬁ'_l)

RECEIIESS)) o2 Q-1 _ e
hoso? @+ 5) 28+ 3) - M-2P GL- D@EL-3) o , (&=0,1,2,
(21
where q = RQ . This is a five-term recurrence relation for the coef-
ficients hl , which leads to the determinantal equation
2
C - p2/3 q/3 -2p~ /15 0 .
2 2
q C+2 - 3p°/5 2q/5 -6p /35
2 2
-2p“/3 2q/3 C+ 6 - 11p~/21 3q/7 . =
2 2
0 -2p°/5 3q/5 C + 12 - 23p“/45
(22)

We are interested in an expression for C when R is small, which is

valid for the ground state. For the lowest state C =0 when R=0,

and since p and q are of order R , to the first approximation

c-pX3  af3 .
= 0 or C = p/3+4qg°/6 . (23)

q 2

This suffices to determine the coefficients through W, in the expan-

3
sion of W. To find the term of order RA in C we put k = q/p

(order unity) and




2
c = -g-— (1 + 3% + p*f + 0(p®) (24)

where f is a function of k , of order unity, to be determined.
By substituting (24) into (22), retaining all relevant terms and re-

2
moving a factor of p we get

K2/6 + pf /3 -2p/15 0
2 2
k 2 - p2(4/15 - kK2/6) 2kp/5 O
=0 (25)
-2p/3 2kp/3 6  3kp/7
0 0 kp/5 12

By expanding and retaining terms up to p2 this gives eventually

£ = (24 5K> - 11K*/8)/135

which can be substituted into (24) to give

2 4 2 2
- 2, .20 o _ K 11k 6
c = Za+xH+35 0 -Pa+3) +o®) L (26

Expansion of Quter Equation

To solve the outer equation systematically we consider a solution

of the form proposed by Jaffés, namely

oo
x(g) = e-pg (1 +§)S/2p-1 z % (g- l)n (27)
= V41

where s = RZ . This is a modification of Hylleraas's original expansion,
in terms of Laguerre functions of argument (& - 1) , which is mathe-
matically more satisfactory. By substituting (27) into (17) we get the

three~term recurrence relation



2 2
xn_l(s/2p -n + xn‘:C +s/2p+s-(p+1)  +2n(s/2p-1-n - 2pj]
2
+ xn+1(n + 1) = 0 B (n = 0:1:2:"") . (28)

The determinantal equation which arises from the elimination of

the coefficients is

C-a 1 0 0
b2 C-a-2(1+2p+0b) 22 0
2 2
0 (1 +b) C-a-4(2 +2p +Db) 3
2
0 0 (2 + b) C-q~-6(3+2p+Db)
(29)
where
2
a = (1L+p)" " -s-58/2p , b = 1-35/2p . (30)
When R =0 we have p=s =20 and since W(0) = -%Zz it follows
that a=b =0 . The first approximation for the ground state value
of C 1is therefore
c £ a (31)

from which it can be shown that the coefficient of the linear term,
Wl , vanishes, in accordance with equation (8). It follows that a
and b are of order R2 , and therefore (31) is valid through terms

. 3 . , , .
in R~ . The next approximation is to solve the equation




b -2 2 0 .
0 1 -2.22 32 ]l =0 . (32)
0 0 22 2.9 .

where g 1is a continued fraction which reduces to

1
8 = THT

N
]

U
N
N
1
N

It follows that g = 1/(-2-g) with the solution g = -1 , and therefore
C = a-b> . (33)
By substituting for a and b from (30) we get

C = 2p-s+p>+(L-s/2p)s/2p +O(R) (34)

where the order of magnitude of the neglected terms follows from the

fact that C - a and b2 are of order R4 .

Energy Expansion

By equating expressions (26) and (34) for C we get an implicit
equation for p as a function of s =RZ and q = kp = RQ . Let
the expansion of p 1in powers of R be

2

p = w[1+ar’+ pR> + y2* + 0] (35)



10
so that

W o= 327 [1+ 2« R% + 2/3R3 + @y + «HE*] + o)
(36)
To find the coefficients &, Ig R X we substitute (35) into the equa-
tion for C , expand, and equate the coefficients of powers of R to
zero. This leads straightforwardly to the result
2

2 . 2 2 2 3,2 2 4o, .
Wo= 32+ 522 RDS - 522, (R2)” + 522 (1 - 6422 /2727) (RZ) +

(37)
According to the general theory the second coefficient W2 is
given by equation (1l1). Since PUA(O) = Z3ln for the ground state

(1ls) of a one electron atom, (1l1l) gives
W, = 2222 (38)
3 "a ?

which agrees with equation (37).
To get some check on W3 and W4 we can use the Hellmann-Feynman
result (9). The potential due to a hydrogen-like atom, defined by (10),

is given by

—ZZaR
8 (R) = (Z_ + 1/R)e - 1/R . (39)
Expanding in powers of R we get
2 2,2 3 2 4
(aw/azb)zb=0 = -z [1-35®e)  +5@e)7 - @) + -0 1 L 0)

An identical expression is obtained by differentiating (37) with respect

to Zb , thus partly checking the expressions for W3 and W

4"
For the hydrogen molecule-ion, Za = Zb =1 , (37) becomes
8 )2 16 .3 , 352 _4
Wo= 2+3R - PR +L[FTR o ) (41)
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Comparison with General Treatment

The general expression derived by Bingel1 using first-order

perturbation theory based on the united atom is

2 2
Z + 2Z
2 2 2 2 a b : 3
o= 2"+ 522 R -3522 ( 2 ) (R2)” + .

(42)
Bingel's treatmént therefore gives the wrong form for W3 s, which for
homozolar molecules, and in particular H2+ , is too sgall by a factor
of 2 . A preliminary investigation of the discrepancy” shows that it
is connected with failure to take into account the non-analytic

behaviour of the molecular wave function near the nuclei as R ->0 .
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